Oestrus And Heat Period In Animals

OESTRUS AND HEAT PERIOD IN ANIMALS. what is  Oestrus and heat period? it is the interval from the end of one heat period to the beginning of another. the oestrus period determines the time where farm animals are receptive to mating.
It is also the period of ’heat” or “oestrus” for curting and  mating in farm animals
(iii) It is followed by a long period in which female animals will not show desire to mate
(iv) It is under the influence of hormone called oestrogen
(v) The oestrus cycle varies among farm animals
e.g Cow = 20 – 21 days
Ewe = 17 – 21days
Sow = 14 – 28days
Doe (Goat) = 17 – 21 days
Doe (Rabbit) = Spontaneous


why the oestrus period detection is important is because it enables the farmer to know when best his animals can be serviced
the heat period enables the farmer to properly manage the animals for the purpose of cross breeding and high breed of farm animals
(iii) the oestrus and heat period also helps the farmer to start preparation for the impending pregnancy


(i) The heat or oestrus period is the time when the female animal shows signs of its readiness to mate
It is the period of sexual receptivity in female animal, when the ovum or ova are released. That is, the period when ovulation takes place
the heat and oestrus period occurs within the oestrus cycle and controlled by oestrogen hormones
(iv) Heat period varies from one animal to another e.g
Cow = 5 – 24hours
Ewe = 35 – 36 hours
Sow = 40 – 48 hours
Doe (Goat) = 40 – 50hours


The vulva becomes large, red and swollen
There is undue noise making or granting
A clear viscous secretion comes from the vigina and this arouse and excites the mates
The animal becomes restless
(v) It shows tendency to be ridden or mounted by other animals
(vi) There is loss of appetite during the heat period of farm animals
during oesrtrus heat period The animal has abnormal high body temperature
(viii) Frequent urination
Standing still to be mounted
(x) Frequent tail shaking as in goat

how mating takes place during oestrus heat in animals

The majority of mammals become sexually-receptive (express estrus) and ovulate spontaneously at defined intervals. The female will only allow the male to mate during a restricted time coinciding with ovulation. Inefficiency of reproduction is attributable in part to prolonged periods of estrus; thus, the female might need to be bred several times to augment the chances of conception (eg., the mare and dog).

differences in the oestrus and heat period of farm animals

Differences in lengths of estrous cycles among species are determined primarily by duration of the luteal phase. Luteal phases of larger mammals are long compared to species of lesser body stature. Many small animals are subject to predation, and cannot afford the luxury of lengthy nonpregnant cycles (moreover, they are usually litter-bearing, have short gestations, abbreviated or no lactational anestrus, and their young attain puberty quickly). Extinction can quickly besiege those species with extended reproductive cycles (eg., rhinoceroses and elephants).

fabioclass images

what are the stages in oestrus and heat period

Stages. The oestrus and heat period cycle can be divided into four stages: proestrus, estrus, metestrus, and diestrus. During proestrus the CL regresses (progesterone declines) and a preovulatory follicle undergoes its final growth phase (estradiol increases).

Ovulation usually occurs during estrus (cows ovulate during metestrus). Proestrus and estrus comprise the follicular phase. Corpora lutea develop during metestrus and function at optimum during diestrus. Metestrus and diestrus make up the luteal phase.

Reproductive tract. Changes in contractility and development of the reproductive tract are regulated by cyclic alterations in secretory patterns of steroid hormones. The oviducts and uterus are motile under the influence of estradiol; progesterone has the opposite effect. The endometrium undergoes proliferation during the follicular phase in response to rising circulatory titers of estradiol.

Progesterone causes endometrial glands to become branched and secretory . Estradiol primes the endometrial response to progesterone (expressed during the luteal phase) by stimulating synthesis of receptors for progesterone (which inhibits synthesis of receptors for estradiol). The cervix becomes dilated in the follicular phase and constricted in the luteal phase; correspondingly, cervical mucus is of either a watery or more dense consistency. Each of the noted changes in the reproductive tract of the female during oestrus cycle or period have relevance to gamete transport and pregnancy – topics discussed in the next chapter.

Because structural integrity of the endometrium requires steroidal support, regression of the CL (or ovariectomy leads to atrophy. An ebb and flow of degeneration, growth, and remodeling of the endometrium occurs in all mammals (necrosis and sloughing are pronounced in menstrual animals).

The vagina also presents cyclic changes according to hormonal fluctuations. Epithelial cells exfoliated from the vaginal wall can be collected onto a swab, smeared onto a slide, and examined under the microscope; the presence of cornified cells is indicative of estrus (Figure 4-45). Keratinization of the mucosal lining helps to minimize irritation to the vagina during copulation. With a drop in circulatory estradiol, cornified epithelia is sloughed and the vaginal mucosa becomes very thin; phagocytic leukocytes can then readily migrate into the vaginal lumen

Cows sometimes exhibit a bloody vaginal discharge during oestrus and heat period; the bleeding originates from essentially intact uterine vessels – diapedesis or pseudomenstruation. Diapedesis also occurs in the proestrous bitch. In some species (eg., murine rodents), conspicuous uterine intraluminal water imbibition at estrus occurs without overt loss of blood cells. Vessels apparently become leaky in response to an acute elevation in circulatory estradiol. Diapedesis is not the result of hormonal withdrawal, and therefore from a mechanistic standpoint is not comparable to menstruation. Possible local mediators of diapedesis are histamine, catecholamines, and arachidonate metabolites. Eosinophils infiltrate the uterus in response to estradiol.

Synchronization of estrus. There are advantages of being able to synchronize the timing of estrus and ovulation in livestock. Synchronization techniques result in a uniform animal crop and labor can be concentrated at parturition. Furthermore, efficient use of an AI technician is maximized when animals are synchronized to estrus. Estrous synchronization technologies are costly, laborious, generally yield lower rates of conception than natural service, and require skill and specialized facilities. The decision to implement a new system of management should be made only after it is deemed feasible and will solve more problems than it creates.

Two basic approaches to synchronization of estrus and ovulation have evolved from an understanding of female reproductive endocrinology – progestin and prostaglandin. Progestins mimic the luteal phase. Estrus and ovulation follow removal of the progestational influence. Prostaglandin F2a causes luteal regression, thereby synchronizing the onset of a follicular phase.

The Syncro-Mate-B system (history) involved placing a norgestomet-releasing implant between the skin and cartilage of the ear of a cow for nine days. At the time of implant insertion, the cow was injected with estradiol valerate to induce endogenous uterine production of luteolysin – so when the implant is removed, there was no natural source of progesterone to prevent a prompt return to estrus. Animals can be either observed for estrus (Table 4-6) and bred 12 hours later or bred-by-appointment 48 hours following implant removal. Advantages of the Syncro-Mate-B system were that some anestrous animals respond and synchrony of estrus was tight (timed insemination is practical).

The system was expensive and labor intensive (animals must be handled twice). It was approved for use in beef animals and dairy heifers. A new alternative for (intravaginal) progesterone delivery is the Eazi-Breed CIDR (controlled internal drug-releasing), which is inserted for 7 days; Lutalyse is given on Day 6.

Orally-active progestins (eg., melengestrol acetate or altrenogest) have been incorporated into livestock rations. Feeding progestins is effective for induction of estrus, but has not met with widespread application because of cost, unequal consumption, and poor synchrony following cessation. Ewes can be induced to estrus by treatment with progestin (eg., two weeks by vaginal sponge impregnated with MPA or flurogestone acetate) and PMSG (at pessary removal); however, because of low corporate profits, these products are no longer readily available in the US marketplace.

Naturally-occurring PGF2a as the tromethamine salt (Lutalyse, Upjohn; ProstaMate, Phoenix Scientific), and synthetic analogs of PGF2a such as cloprostenol (Estrumate, Haver), are sold for synchronization of estrus in nonlactating cattle (Figure 4-46) and horses.

The cost of a single-injection prostaglandin program is less than that of a progestin system and not as laborious. Animals must be in diestrus to respond to PGF2a (the young CL is insensitive to treatment), return to estrus is somewhat variable (semen is wasted if breeding-by-appointment), and treatment of pregnant females can cause abortion. Porcine CL will not respond to PGF2a until about Day 12 of the estrous cycle. Gonadotropin-releasing hormone (to induce ovulation and CL formation) is being used in cattle in combination

oestrus and heat period



money market

raises funds for expansion